Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 34(2): 90-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215303

RESUMO

RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous GNAO1 c.607 G > A variant causing GNAO1 encephalopathy. By screening short interfering RNA (siRNA), we showed that GNAO1 c.607G>A is a druggable target for RNAi. The si1488 candidate achieved at least twofold allelic discrimination and downregulated mutant protein to 35%. We created vectorized RNAi by incorporating the si1488 sequence into the short hairpin RNA (shRNA) in the adeno-associated virus (AAV) vector. The shRNA stem and loop were modified to improve the transcription, processing, and guide strand selection. All tested shRNA constructs demonstrated selectivity toward mutant GNAO1, while tweaking hairpin structure only marginally affected the silencing efficiency. The selectivity of shRNA-mediated silencing was confirmed in the context of AAV vector transduction. To conclude, RNAi effectors ranging from siRNA to AAV-RNAi achieve suppression of the pathogenic GNAO1 c.607G>A and discriminate alleles by the single-nucleotide substitution. For gene therapy development, it is crucial to demonstrate the benefit of these RNAi effectors in patient-specific neurons and animal models of the GNAO1 encephalopathy.


Assuntos
Encefalopatias , Terapia Genética , Animais , Humanos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Alelos , Encefalopatias/genética , Vetores Genéticos/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética
2.
Polymers (Basel) ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139942

RESUMO

Biocidal coatings are of great interest to the healthcare system. In this work, the biocidal activity of coatings based on a complex biocide containing polymer and inorganic active antibacterial components was studied. Silver oxide was distributed in a matrix of a positively charged interpolyelectrolyte complex (IPEC) of polydiallyldimethylammonium chloride (PDADMAC) and sodium polystyrene sulfonate (PSS) using ultrasonic dispersion, forming nanoparticles with an average size of 5-6 nm. The formed nanoparticles in the matrix are not subject to agglomeration and changes in morphology during storage. It was found that the inclusion of silver oxide in a positively charged IPEC allows a more than 4-fold increase in the effectiveness of the complex biocide against E. coli K12 in comparison with the biocidal effect of PDADMAC and IPEC. Polycation, IPEC, and the IPEC/Ag2O ternary complex form coatings on the glass surface due to electrostatic adsorption. Adhesive and cohesive forces in the resulting coatings were studied with micron-scale coatings using dynamometry. It was found that the stability of the coating is determined primarily by adhesive interactions. At the macro level, it is not possible to reliably identify the role of IPEC formation in adhesion. On the other hand, use of the optical tweezers method makes it possible to analyze macromolecules at the submicron scale and to evaluate the multiple increase in adhesive forces when forming a coating from IPEC compared to coatings from PDADMAC. Thus, the application of ternary IPEC/Ag2O complexes makes it possible to obtain coatings with increased antibacterial action and improved adhesive characteristics.

3.
Nucleic Acids Res ; 51(1): 449-462, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546783

RESUMO

Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.


Assuntos
Antraquinonas , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biossíntese de Proteínas , Antibacterianos/farmacologia , Códon de Terminação/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Antraquinonas/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33593838

RESUMO

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. An attractive class of compounds is nybomycins, reported to be "reverse antibiotics" that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase, while being inactive against wild-type strains with FQ-sensitive gyrases. The strong "reverse" effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in Gram-negative E. coli ΔtolC strain with enhanced permeability, wild-type gyrase and GyrA S83L mutant, resistant to fluoroquinolones, are both similarly sensitive to nybomycin.

5.
Insects ; 13(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421945

RESUMO

There are several well-studied examples of protective symbiosis between insect host and symbiotic actinobacteria, producing antimicrobial metabolites to inhibit host pathogens. These mutualistic relationships are best described for some wasps and leaf-cutting ants, while a huge variety of insect species still remain poorly explored. For the first time, we isolated actinobacteria from the harvester ant Messor structor and evaluated the isolates' potential as antimicrobial producers. All isolates could be divided into two morphotypes of single and mycelial cells. We found that the most common mycelial morphotype was observed among soldiers and least common among larvae in the studied laboratory colony. The representative of this morphotype was identified as Streptomyces globisporus subsp. globisporus 4-3 by a polyphasic approach. It was established using a E. coli JW5503 pDualRep2 system that crude broths of mycelial isolates inhibited protein synthesis in reporter strains, but it did not disrupt the in vitro synthesis of proteins in cell-free extracts. An active compound was extracted, purified and identified as albomycin δ2. The pronounced ability of albomycin to inhibit the growth of entomopathogens suggests that Streptomyces globisporus subsp. globisporus may be involved in defensive symbiosis with the Messor structor ant against infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA